Part Number Hot Search : 
11120 8A226K00 0F1TR HL1553 MHF2815S LF101EDI BCM5424 001SM
Product Description
Full Text Search
 

To Download ZL10060LDG1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ZL10060 MOPLL with IF AGC Amplifier
Data Sheet Features
* Highly integrated mixer/oscillator PLL and IF AGC amplifier for multi band analog/digital terrestrial tuners and/or cable tuners Low phase noise PLL frequency synthesizer AGC output level detect with digital controlled TOP threshold >50 dB Desired/Undesired ratio without pre filtering Separate analog and digital IF outputs >41 dB IF AGC Control range Power down modes to support power reduction initiatives Four independent GPO 48 pin QFN Package
November 2005
Ordering Information ZL10060LDG1 48 Pin QFN* Trays ZL10060LDF1 48 Pin QFN* Tape and Reel *Pb Free Matte Tin -20C to +85C
* * * * * * * *
Description
The ZL10060 is a 3 band MOPLL with IF AGC amplifier. It down-converts the RF channel to a standard IF followed by filtering and IF AGC amplification for the digital channel. Each band consists of a low noise preamplifier/mixer and local oscillator with an external varactor tuned tank circuit. An IF level detector is included for control of the RF AGC. The Take Over Point and time constant are both programmable. The ZL10060 has high signal level handling performance providing excellent performance in the presence of high level unwanted signals. All chip control is via I2C bus. If higher performance is required, an alternative part, ZL10063 is available with image reject down conversion.
Applications
* * * * DVB-T receiver systems ISDB-T receiver systems DVB-C cable receiver systems Terrestrial analog receivers
Band Pass Filter
Analog IF SAW
Digital IF SAW
Analog
Analog IF
Demod
LNA and Tracking Filters
ZL10060
RF Input
Digital IF
Digital Demod
IF AGC
GPO
PLL
AGC Det
I2C Control
I2C
Tuning RF AGC
VCO Tank Circuits
Loop Filter
Figure 1 - Basic Block Diagram 1
Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2005, Zarlink Semiconductor Inc. All Rights Reserved.
ZL10060 Table of Contents
Data Sheet
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 RF Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 SAW Driver Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 AGC Detector and ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 IF AGC Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 General Purpose Switching Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.8 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.0 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Programmable Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 PLL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Control Register - Byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Control Register - Byte 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Control Register - Byte 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.0 Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.0 PIn Circuit Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.0 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2
Zarlink Semiconductor Inc.
ZL10060 List of Figures
Data Sheet
Figure 1 - Basic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3 - Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4 - Low Band (VHF1) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5 - Mid Band (VHF3) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6 - High Band (UHF) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7 - Typical Application Circuit (DVB-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 8 - Crystal Oscillator Circuit (4 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 9 - Interstage Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 10 - Noise Figure Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3
Zarlink Semiconductor Inc.
ZL10060 List of Tables
Data Sheet
Table 1 - Pin Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2 - Programmable Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3 - Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4 - Address Bit MA1 and MA0 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 5 - Byte 2- LO Divider (MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 6 - Byte 3 LO Divider (LSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7 - Byte 4 PLL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8 - Charge Pump Current Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 9 - Reference Divide Ratio Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 10 - Byte 5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 11 - Band Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 12 - Internal Circuit Block Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 13 - GPPO Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 14 - Byte 6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 15 - AGC Decay Current Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 16 - AGC Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 17 - Byte 7 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 18 - ADC Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 19 - Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 20 - Read Data Format (MSB is transmitted first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 21 - AGC Activity Flag Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 22 - ADC Output Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 23 - Optimum CP and LO Trim Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
IFAGC SAB SA ADC SDA SCL ADD AGCOP CNOPB CNOP CONT VccRF
1
IFOPB IFOP VeeIF VccIF XTAL XCAP VccIF SDB SD VccDIG PUMP DRIVE
ZL10060
IFIPB IFIP VccOSC VeeOSC LHIPB LHOPB LHOP LHIP LMOPB LMOP LLOPB LLOP
Vee (PACKAGE PADDLE)
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Port Name IFAGC SAB SA ADC SDA SCL ADD AGCOP CNOPB CNOP CONT VccRF SIPB SIP GPP0 GPP1 IF amplifier AGC input
SAW filter driver output (analog) SAW filter driver output (analog) External ADC input I2C bus serial data input/output I2C bus serial clock input I2C bus address selection input AGC output Analog converter output Analog converter output Paddle (Ground) RF section supply SAW filter driver input SAW filter driver input General purpose switching port General purpose switching port Table 1 - Pin Names
SIPB SIP GPP0 GPP1 GPP2 VeeRF LOIP IPREF MIDIP HIIP HIIPB GPP3
Figure 2 - Pin Diagram
Function
5
Zarlink Semiconductor Inc.
ZL10060
Pin No. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Paddle Port Name GPP2 VeeRF LOIP IPREF MIDIP HIIP HIIPB GPP3 LLOP LLOPB LMOP LMOPB LHIP LHOP LHOPB LHIPB VeeOSC VccOSC IFIP IFIPB DRIVE PUMP VccDIG SD SDB VccIF XCAP XTAL VccIF VeeIF IFOP IFOPB Vee Function General purpose switching port RF section ground Low band input Reference input for low and mid bands Mid band input High band input High band inverse input General purpose switching port Low band local oscillator output Low band local oscillator inverse output Mid band local oscillator output Mid band local oscillator inverse output High band local oscillator input High band local oscillator output High band local oscillator inverse output High band local oscillator inverse input Oscillator section ground Oscillator supply IF amplifier input IF amplifier inverse input Loop amplifier drive output Loop amplifier charge pump output Digital section supply SAW filter driver output (digital) SAW filter driver output (digital) IF amplifier section supply Reference oscillator feedback input Reference oscillator crystal drive IF amplifier section supply IF section ground IF amplifier output IF amplifier inverse output Global ground Table 1 - Pin Names (continued)
Data Sheet
6
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
Figure 3 - Detailed Block Diagram
1.0
Functional Description
The ZL10060 is a three-band RF mixer oscillator with on-board frequency synthesizer and IF AGC amplifier, integrating all tuner active circuitry after the tracking filter in a single package. It is intended for use in all band terrestrial tuners, and requires a minimum external component count. It contains all elements required for RF down conversion to a standard IF with the exception of external VCO tank circuits. In normal application the RF input is interfaced to the selected mixer oscillator preamplifier through the tuner prefilter and AGC stages. The ZL10060 provides an RF AGC control signal, which can be used to control the RF gain. The preamplifier output feeds the mixer stage where the required channel is down converted to the IF frequency. The local oscillator frequency for the down conversion is obtained from the on board PLL and local oscillator, with an external varactor tuned tank. The downconverted signal is then passed through an external filter into a SAW filter driver amplifier. This provides two output channels for hybrid analog and digital applications.
7
Zarlink Semiconductor Inc.
ZL10060
An AGC IF amplifier is included which provides an output signal to a digital demodulator. The device is controlled through an I2C compatible interface.
Data Sheet
1.1
RF Converter
The ZL10060 contains three input stages to cover the VHF1, VHF3 and UHF frequency bands. The inputs would normally be driven by front end amplifiers and tracking filters. All three inputs are differential, however, the VHF1 and VHF3 inputs would normally be single ended. These inputs therefore can share a common input reference pin. The UHF input should be driven with a differential signal. The inputs are all high impedance. The differential converter IF output is then passed through an external interstage filter. This can be tuned for 36 MHz for DVB-T applications but can also be used at 44 MHz and 57 MHz to be compatible with other TV standards. The recommended filter circuit is shown in Figure 9. The design of this filter provides an impedance transformation as well as rejection of adjacent channels. A 0.5 dB Chebychev filter with 10 MHz bandwidth is recommended. This gives a flat response across the pass band and takes into account normal component tolerances.
1.2
SAW Driver Amplifier
The output of the interstage filter then passes to the SAW filter drive amplifier. This provides further amplification and interfaces to the SAW filter. Two SAW filter drive outputs are provided for hybrid analog and digital applications. Both output stages are identical however the digital output (SD, SDB) should always be used for digital applications as the pin out of the device has been optimized to give the best isolation performance in this configuration. Output selection is programmable however it should be noted that the unselected output is not powered off but operates at a lower power level which means that a signal will still be present on the output. The differential outputs will drive a balanced SAW filter with a tuning inductor to resonate with the SAW filter input capacitance. The SAW filter can also be driven without the tuning inductor but with the addition of 350 ohm resistors to ground on the SAW driver outputs to increase the output drive capability. This will increase total current consumption by 14 mA.
1.3
AGC Detector and ADC
The ZL10060 contains a broadband AGC detector circuit which provides an output to provide gain control for the RF frontend gain stages. The detector input signal is derived from the signal level in the SAW driver amplifier. The composite signal at this point is the wanted signal plus adjacent channels (N +/- 1, N +/- 2, N +/- 3). The AGC detector threshold point at which the agc output becomes active can be programmed to one of eight levels via the I2C interface. When the composite level reaches the agc threshold, the agc output pin will be active. The AGC attack current is fixed, however, the decay current can be programmed to two levels. The agc output can only drive a high impedance e.g., a dual gate FET. If RF gain control uses a PiN diode then a simple buffer circuit will be required. An AGC flag output is also available through the I2C interface. This indicates when the AGC output is active i.e., less than 4 volts. The agc output level can also be monitored by an on chip 3 bit ADC. Although the ADC is 3 bits, only 5 levels are available. Alternatively the ADC can be programmed to measure the voltage on an external pin (ADC Pin 4).
1.4
IF AGC Amplifier
The AGC amplifier amplifies the output of the SAW filter for the digital channel and provides a differential output to the demodulator. The analog gain control signal is normally derived from the demodulator. At least 41 dB of gain control is provided. The AGC amplifier can be powered down independently of the rest of the device if not required. This mode could be used in analog applications to reduce overall power consumption.
8
Zarlink Semiconductor Inc.
ZL10060
1.5 VCO
Data Sheet
Separate VCO's are provided for each band. The oscillator circuits are on chip however the tank circuitry is external. All three oscillators are differential. The typical external tank circuits are shown in Figures 4, 5 and 6. It is essential to take care to minimize track lengths and parasitics when designing the PCB layout to obtain best performance. The close-in phase noise of the local oscillator can be optimized at the programmed operating frequency by a programming bit which increases bias current in the VCO.
.
R_bias LLOPB Cs pF L1 nH Vvar
LLOP R_bias
Figure 4 - Low Band (VHF1) External Tank Circuit
R_bias LMOPB Cs pF L1 nH Vvar
LMOP R_bias
Figure 5 - Mid Band (VHF3) External Tank Circuit
9
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
Cp
LHIPB
Cp
LHOPB
Cp L1 nH R_bias
LHOP
Cs pF
Vvar
LHIP
Cp
R_damp
R_bias
Figure 6 - High Band (UHF) External Tank Circuit
1.6
PLL Frequency Synthesizer
The PLL frequency synthesizer section contains all the elements necessary, with the exception of a frequency reference and loop filter to control a varicap tuned local oscillator, to form a complete PLL frequency synthesized source. The device allows for operation with a high comparison frequency and is fabricated in high speed logic, which enables the generation of a loop with good phase noise performance. It can be operated with comparison frequencies appropriate for frequency offsets as required in digital terrestrial (DTT) receivers. The LO input signal from the selected oscillator section is routed to an internal preamplifier, which provides gain and reverse isolation from the divider signals. The output of the preamplifier interfaces directly to the 15-bit programmable divider, which is of MN+A architecture, with a 16/17 dual modulus prescaler. The A counter is 4-bits, and the M counter is 11 bits. The output of the programmable divider is fed to the phase comparator where it is compared in both phase and frequency domain with the comparison frequency which is derived either from the on-board crystal controlled oscillator, or from an external reference source. In both cases the reference frequency is divided down to the comparison frequency by the reference divider, which is programmable into 1 of 16 ratios. The output of the phase detector feeds a charge pump and loop amplifier section, which when used with an external loop filter, integrates the current pulses into the varactor control voltage. The programmable divider output, Fpd, divided by two and the reference divider output, Fcomp, can be switched to port P0 by programming the device into a test mode. The PLL includes a lock detect circuit. The lock detect output is available by reading the Status byte on the I2C interface
1.7
General Purpose Switching Ports
The ZL10060 has four output switching ports. Three of these ports (GPP[3:1]) incorporate a 10 kohm pull up resistor. The remaining port (GPP0) is an open collector switch. These ports can be used for switching external RF input stages for example. Ports GPP[1:0] can also be used as test outputs for debug purposes.
1.8
I2C Interface
The ZL10060 is controlled by an I2C data bus and is compatible with both 3.3 V and 5 V control levels. Data and Clock are fed in on the SDA and SCL lines respectively as defined by I2C bus format. The device can either accept data (write mode), or send data (read mode). The LSB of the address byte (R/W) sets the device into write mode if it is low, and read mode if it is high. The device can be programmed to respond to 1 of 4 addresses,
10
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
which enables the use of more than one device in an I2C bus system. The address is selected by applying a voltage to the `ADD' input. When the device receives a valid address byte, it pulls the SDA line low during the acknowledge period, and during following acknowledge periods after further data bytes are received. When the device is programmed into read mode, the controller accepting the data must pull the SDA line low during all status byte acknowledge periods to read another status byte. If the controller fails to pull the SDA line low during this period, the device generates an internal STOP condition, which inhibits further reading.
2.0
Programming
The ZL10060 is fully programmable through the I2C interface. The device can also output data to the controller.
2.1
Programmable Features
Feature Description
RF programmable divider Reference programmable divider Band selection AGC Threshold AGC Decay Charge pump current IF amplifier function SAWF output select Ports GPP[3:1]
Programs PLL main divider Programs PLL reference divider to set required frequency step Selects RF input and appropriate LO oscillator. Sets the Input Power Level Threshold at which the AGC detector starts to generate a control level. Sets the AGC decay current. Selects one of the four charge pump current settings. The IF amplifier can be enabled independently of other circuit blocks. Select the analog or digital SAW driver output. These are configured as NPN buffers with 10 kohm pull-up resistors to Vcc. Logic `1' = on Logic `0' = off; default on power up This is configured as a NPN open collector buffer. Logic `1' = on Logic `0' = off; default on power up Adjusts the VCO bias current to provide optimum phase noise performance. Select either the internal AGC detect output level or the external level applied to the ADC input pin. The ZL10060 has various power saving modes. Test modes to monitor and control internal PLL signals.
Table 2 - Programmable Features
PORT GPP0 VCO Trim ADC input Select Programmable power Test modes
2.2
Register Map
There are a total of 7 write registers, the first of which is the Address register. The control registers are described in detail in the following section. The MSB of each register is written first. After reception and acknowledgement of a correct address (byte 1), the first bit of the following byte determines whether the byte is interpreted as a byte 2 or 4, a logic '0' indicating byte 2, and a logic '1' indicating byte 4. Having
11
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
interpreted this byte as either byte 2 or 4 the following data byte will be interpreted as byte 3 or 5 respectively. Byte 5 will be followed by byte 6 or a stop condition. Byte 6 will be followed by byte 7 or a stop condition. Byte 7 will be followed by a stop condition or a byte 2 or byte 4 as described above. Further data bytes can be programmed following the above-described protocol. A STOP condition can be generated after any data byte, if however it occurs during a byte transmission, the previous byte data is retained. To facilitate smooth fine tuning, the frequency data bytes are only accepted by the device after all 15 bits of frequency data have been received, or after the generation of a STOP condition.
MSB LSB ACK
7
Address Programmable divider Programmable divider Control data Control data Control Data Control Data
6 1 D14 D6 C1 BS0 LO0 X
5 0 D13 D5 C0 SL1 ATC AGD
4 0 D12 D4 R4 SL0 IFE ADS
3 0 D11 D3 R3 P3 X T3
2 MA1 D10 D2 R2 P2 AT2 T2
1 MA0 D9 D1 R1 P1 AT1 T1
0 0 D8 D0 R0 P0 AT0 T0 A A A A A A A
Byte 1 Byte 2W Byte 3W Byte 4W Byte 5W Byte 6W Byte 7W
1 0 D7 1 BS1 LO1 SAS
Table 3 - Control Registers
A MA1, MA0 D14-D0 R4-R0 C1, C0 BS1-BS0 SL1-SL0 SAS P3-P0 ADS ATC AGD AT2:AT0 LO1:LO0 T3-T0 IFE X
Acknowledge bit Address bits Programmable division ratio control bits Reference division ratio select Charge pump current select Band select bits Power down modes SAWF drive output select P3-P0 port output states ADC input select AGC Decay Current AGC Disable AGC Onset threshold Control LO trim control bits Test mode control bits IF AGC amplifier enable Don't Care
12
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
Details of the programming registers are shown in the following sections. Default values on power up are also shown.
2.3
Address Register
The ZL10060 address (MA1, MA0) are determined by the voltage set at the address pin (ADD) as shown in Table 4.
Address Select (Byte 1) MA1 MA0 Address Input Voltage Level
0 0 1 1
0 1 0 1
0 - 0.1Vcc (Connect to Vee) 0.2Vcc - 0.3Vcc (Open circuit) 0.4 Vcc - 0.6 Vcc (30K to Vcc) 0.9 Vcc - 1.0 Vcc (Connect to Vcc)
Table 4 - Address Bit MA1 and MA0 Settings
2.4
PLL Registers
Bytes 2,3 and 4 are used to program the PLL.
Bit Field Name Default Description
7 6:0
D[14:8]
0 0
Must be set to 0 MSB bits of LO Divider register.
Table 5 - Byte 2- LO Divider (MSB)
Bit Field
Name
Default
Description
7:0
D[7:0]
0
LSB bits of LO Divider register.
Table 6 - Byte 3 LO Divider (LSB)
The LO frequency will not be updated until both Byte 1 and Byte 2 have been programmed.
Bit Field Name Default Description
7 6:5 4:0
C[1:0] R[4:0]
1 0 10011
Must be set to 1 Charge pump current. Reference divider control.
Table 7 - Byte 4 PLL Control
The charge pump current values are selected from the following table:
C1 C0 Current A
0
0
+-155
Table 8 - Charge Pump Current Selection
13
Zarlink Semiconductor Inc.
ZL10060
C1 C0 Current A
Data Sheet
0 1 1
1 0 1
+-330 +-690 +-1450
Default State on power up = 00 Table 8 - Charge Pump Current Selection
The reference divider ratio can be selected from the following table:
R4 R3 R2 R1 R0 Ratio
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
16 32 64 128 20 40 80 160 24 48 96 192 28 56 112 224
Default State on power up = 10011 Table 9 - Reference Divide Ratio Settings
14
Zarlink Semiconductor Inc.
ZL10060
2.5 Control Register - Byte 5
Bit Field Name Default Description
Data Sheet
7:6 5:4 3:0
BS[1:0] SL[1:0] P[3:0]
11 01 0
Band Switching Power-up modes General Purpose Output ports
Table 10 - Byte 5 Control
The band switching is controlled as shown below:
BS1 BS0 Band Selected
0 0 1 1
0 1 0 1
LO Band MID Band HI band All off Default state on power up = 11
Table 11 - Band Selection
The various power-up modes are shown below. The IF AGC amplifier is controlled separately The I2C interface and crystal oscillator circuit is active in all modes.
Power Mode SL1 SL0 I2C interface and registers Crystal oscillator Section Status PLL & VCO Converter and IF stages
0 1 1
X 0 1
Sleep PLL and VCO enabled Full
Enabled Enabled Enabled
Enabled Enabled Enabled
Disabled Enabled Enabled
Disabled Disabled Enabled
Table 12 - Internal Circuit Block Control
The ZL10060 has four output ports. Ports [3:1] have an internal 10 kohm pull up resistor to Vcc. GPP0 is open collector.
Function Bit 0 1
GPP0 output Enable GPP1 output Enable GPP2 output Enable GPP3 output Enable
P0 P1 P2 P3
Off (High Impedance) Off Off Off
On (Current Sink) On (Current Sink) On (Current Sink) On (Current Sink)
Table 13 - GPPO Output Port Control
15
Zarlink Semiconductor Inc.
ZL10060
2.6 Control Register - Byte 6
Bit Field Name Default Description
Data Sheet
7 6 5 4 3 2:0
LO1 LO0 ATC IFE X AT[2:0]
0 0 0 0 0 0
VCO Bias Trim Not used AGC Decay current select IF AGC Amplifier enable (1 = On) Not used AGC Threshold Select
Table 14 - Byte 6 Control
The VCO bias trim adjusts the VCO bias to give optimum close-in phase noise. In general this should be set to 1 for the lower third of the VCO frequency range. The AGC attack current is fixed at 100 A however the agc decay current can be programmed to one of two values as shown below. If the PLL is unlocked (FL = 0), then the ATC control is over-ridden and the AGC decay current is set to 10A. When the PLL locks (FL = 1) the decay current reverts to the programmed ATC value.
ATC AGC Decay Current (A)
0 1
10.0 0.3
Table 15 - AGC Decay Current Setting
16
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
The AGC threshold can be programmed using the AT[2:0] bits. Note that the programmed value is dBV peak.
AT2 AT1 AT0 AGC Threshold (peak signal in dBV into detector)
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
120 118 116 114 112 110 107 104 Default state on power up = 000
Table 16 - AGC Threshold Selection
2.7
Control Register - Byte 7
Name Default Description
Bit Field
7 6 5 4 3:0
SAS X AGD ADS T[3:0]
1 0 1 0 0
Digital SAW Drive Output Select (1 = Digital) Not used AGC Detector Enable (0 = Enabled) ADC Input select Test Bits
Table 17 - Byte 7 Control
The ADC input selection is shown in the table below
ADS ADC Function
0 1
AGC Output External ADC input
Table 18 - ADC Input Selection
The test bits T[3:0] allow internal PLL signals to be monitored and also to manually control charge pump current and AGC detector output. This facilities may be useful during debug. The test bit selection is shown below. The reserved test modes should not be used.
T3 T2 T1 T0 Test Mode Description
0 0 0 0
0 0 0 0
0 0 1 1
0 1 0 1
Normal operation Reserved Test Mode AGC Sink, Force Iagc = -100 A AGC Source, Force Iagc = 10 A P0 = Output of AGC bias DAC
Table 19 - Test Modes
17
Zarlink Semiconductor Inc.
ZL10060
T3 T2 T1 T0 Test Mode Description
Data Sheet
0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0 1
Reserved Test Mode Reserved Test Mode Reserved Test Mode Reserved Test Mode Reserved Test Mode Charge pump sink * Status byte FL set to logic `0' Charge pump source * Status byte FL set to logic `0' Charge pump disabled * Status byte FL set to logic `1' Port P0 = Fpd/2 Charge pump sink * Status byte FL set to logic `0' Port P0 = Fcomp Charge pump source * Status byte FL set to logic `0' Port P0 = Fcomp Charge pump disabled * Status byte FL set to logic `1' Port P0 = Fcomp
1
1
1
0
1
1
1
1
Table 19 - Test Modes (continued)
2.8
Read Mode
When the device is in read mode, the status byte read from the device takes the form shown in Table 20.
MSB LSB ACK
7
Address Status Byte
6 1 FL
5 0 1
4 0 1
3 0 AGF
2 MA1 V2
1 MA0 V1
0 1 V0 A A
Byte 1 Byte 2R
1 POR
Table 20 - Read Data Format (MSB is transmitted first)
The following describes data read through the read byte; *
Bit 7 (POR) is the power-on reset indicator, and this is set to a logic '1' if the Vcc supply to the device has dropped below 3 V (at 25C), e.g., when the device is initially turned ON. The POR is reset to '0' when the read sequence is terminated by a STOP command. When POR is set high this indicates that the programmed information may have been corrupted and the device reset to power up condition. Bit 6 (FL) is the PLL lock flag and indicates whether the device is phase locked, a logic '1' is present if the device is locked, and a logic '0' if the device is unlocked. The FL bit is set after 64 consecutive comparison cycles in lock.
*
18
Zarlink Semiconductor Inc.
ZL10060
*
Bit 3 (AGF) is the AGC detector flag and indicates whether the AGC detector is active. AGF AGC Activity Flag
Data Sheet
0 1
AGC active, VAGC < 4 V External RF LNA gain is reduced AGC not active, VAGC >4 V External RF LNA gain is at maximum
Table 21 - AGC Activity Flag Settings
*
Bits 2:0 (V2:V0) contain the ADC output data. The ADC output is sampled on the ACK clock of the read address byte. Input Level (V) V2 V1 V0
< 0.32 Vcc 0.32Vcc to 0.48Vcc 0.48Vcc to 0.64Vcc 0.64Vcc to 0.80Vcc > 0.80Vcc
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
Table 22 - ADC Output Values
19
Zarlink Semiconductor Inc.
3.0
PLL loop filter
TP
TP3 R9
1k 1k
C21
+30V
R5 D3
1k 1k BB555
R3 D2
BB640
R1 D1
BB640
8.2nF
gnd
C20 R8
20k 100nF
C46 R6
3k3
C17a
10nF
220pF
R4
3k3
R2
3k3
gnd
R7
27pF 68pF 100pF 10k
+5V
C16 L6 C30
gnd gnd gnd
C10 L4
Coil Data
12n5H (air) 100nH (air)
C2 L2
C54
100pF
TR1
0R
R13
gnd L2: 100nH as 8.5 turns 24 swg (0.56mm) En Cu on 2.5mm dia close wound L4: 12.5nH as 30mm 24 swg En Cu formed into 2.5 turns on 2mm dia space wound L6: 2n5H as 16mm 24 swg En Cu formed into 5/4 turns on 2mm dia space wound
10nF
2n5H (air)
SF1 C26
100pF 18k 6R8 6R8
gnd 4 gnd 34 33 32 29 35 28 27 36 31 30 26 25 5
1nF 2p2F 2p2F 2p2F 2p2F 1nF
R16 C32 C13 C12 C14
gnd
BCW33
R14 C11
R15
X6874D
2
IN+
OP+
Applications Information
INIFIN LHIP IFINB LLOP
GND
1
C27
OP-
3
LHIPB
LHOP
LMOP
LLOPB
LHOPB
VccOSC
37 DRIVE PUM P VccDIG SD
1nF
VeeOSC
+5V GPP3 HIIPB HIIP M IDIP RFINB 20 gnd 21 C8 22 23 1 24 2
LMOPB
gnd GPP3
3
4
C33
10nF
C37
gnd 39 40
38
C40
100pF 100pF
RF IN (UH F)
6 gnd
10nF
C3 C5
1nF
L13
nm
R26 R27
nm
1.5uH
C15
SDB
X6 X4 X2
nm 0R
10nF
RF IN (VH 3) F
gnd
gnd 41 +5V 42
IC1
VccIFO XCAP XTAL LOIP 19 18 gnd GPP2 GPP1 17 16 15 14
1nF nm
A typical applications circuit is shown in the following diagram.
ZL10060
20
C7 C19
47pF
C1 C18
43 VeeRF GPP2 GPP1 GPP0 IFOP SIP IFOPB SIPB VccRF Gnd 13 44 +5V
150pF
10nF
ZL10060
ZL1006X
gnd gnd
X7 X3
nm
gnd X1
4.000MHz
X5
nm
0R
C28
27pF 10nF
45
C35
46 VeeIF gnd 47 48
VccIF
RF IN (VH 1) F
gnd gnd GPP0 +5V gnd
IFAGC
SAB
SA
ADC
SDA
SCL
ADD
AGCout
CNOPB
CNOP
C22
10nF
Conti nuity
1
2
3
4
5
6
7
8
9
10
11
12
0
Figure 7 - Typical Application Circuit (DVB-T)
C23
10nF
Zarlink Semiconductor Inc.
Interstage Filter L9
680nF
IF Output to
Digital Demodulator
C24
1nF
L11
680nF
C39
+5V gnd
C25 L10 C49
10nF
C4
18pF
gnd
+30V +5V IFAGC
C56 C38
680nH 12pF 12pF 12pF
1 2 3 4
C53 C48
12pF 10nF
+
+ C36
IFAGC ADC gnd
10uF
2u2F
gnd
C47 gnd 100pF
C6
18pF
C34
10nF
AGC Out
C51
10nF
Analog SAW C50
10nF
gnd SCL SDA
Driver Output
I2C
Data Sheet
ZL10060
Data Sheet
The low (VHF1) and Mid (VHF3) bands are single ended however the high band (UHF) should be differential. All IF signals are differential. It is essential to have good RF layout around the RF stages, i.e., RF inputs and the VCOs. Track lengths around the VCO's should be minimized to reduce track inductance. The layout should be organized to give good isolation between the IF signal paths. In particular good isolation is required between the outputs and inputs of the IF AGC amplifier. Isolation across the SAW filter is also important to ensure rejection of unwanted adjacent signals. This can be achieved by routing input and output tracks on opposite sides of the board. It is also important to have good isolation between the high level IF signal and the crystal oscillator circuit to minimize any interactions. Care should be taken when locating IF tuning inductors to ensure there is no radiation to other parts of the circuit. The crystal oscillator can also provide a clock signal to the demodulator. This can be done by taking the oscillator signal from the crystal series capacitor (27 pF) as shown in the following diagram.
Figure 8 - Crystal Oscillator Circuit (4 MHz)
21
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
The interstage filter between the converter outputs provides some rejection of adjacent channels (N +/- 2).The recommended values are shown in Figure 9. The choice of components is important not only to give a flat response but also to provide an impedance transformation. The specified noise figure for the low and mid bands assumes that there will be a network before the device to provide image rejection. In a tuner this would be part of the input tracking filters but for test purposes a network is shown in Figure 10.
Vcc R source R source SAWF Drive Amplifier Input L1 CNOPB L1 C1 CNOP Cc SIPB
Cc C1 L2 C1
SIP C2
Rterm
Rterm
IF Type MHz
0.5 dB BW MHz Rsource Rterm
Component values L1 L2 C1 Cc C2
0.5 dB Chebycheff
36
12
700
350
560
560
18
12
8.2
Figure 9 - Interstage Filter
22
Zarlink Semiconductor Inc.
ZL10060
Data Sheet
50
C1
1nF
MIDIP/LOIP
Vs
L1 C2 1nF
IPREF
DUT
Gnd
Frequency Band LO RF IN C1 L1 C2
MHz LOW LOW MID MID 90 200 240 500
MHz 46 156 196 446
pF 20 8 8 2.1
nH 299 65 41 21
pF 20 8 8 4
Figure 10 - Noise Figure Measurement Conditions
The optimum charge pump and LO trim settings for the application circuit shown in Figure 8 are shown in the table below. These give the optimum phase noise performance for the circuit shown. The changes in charge pump current compensate for frequency and VCO gain variations.
Charge Pump Setting CP LO Trim LO1
Frequency Range
VHF1 50 -110 MHz VHF1 100 -160 MHz VHF3 160 - 250 MHz VHF3 250 - 350 MHz VHF3 350 - 450 MHz UHF 450 - 500 MHz UHF 500 - 700 MHz UHF 700 - 800 MHz UHF 800 - 850 MHz
01 10 10 01 10 00 01 10 11
1 1 1 0 0 1 1 1 1
Table 23 - Optimum CP and LO Trim Settings
23
Zarlink Semiconductor Inc.
ZL10060 4.0
Pin No.
Data Sheet
PIn Circuit Information
Pin Name Port Sense Function Schematic
1
IFAGC
Input
IF AGC control
IFA G C 3K V REF
3K
2, 3
SAB, SA
Output, Output
SAW filter driver output A inverse SAW filter driver output A
V cc SA 50 SAB
4
ADC
Input
ADC input
V cc
ADC
5
SDA
Bi-directional I2C bus serial data input/output
V cc
SDA
6
SCL
Input
I2C bus serial clock input
V cc
SCL
24
Zarlink Semiconductor Inc.
ZL10060
Pin No. Pin Name Port Sense
Data Sheet
Function
Schematic
7
ADD
Input
I2C address select
V cc
63k ADD 3k
21k
8
AGCOP Output
AGC output
V cc
100
AGCOP
1K
9, 10
CNOPB, Output, CNOP Output
Converter Output inverse Converter Output
500 CNOP
Vcc 500 CNOPB
11 12 13, 14
Cont VccRF SIPB SIP
Supply Input, Input
Paddle RF section supply SAW filter driver input inverse, SAW filter driver input
V cc
S IP S IP B
250 1 .1 K
15
GPP0
Output
Switching port/Test output 1
GPP0
25
Zarlink Semiconductor Inc.
ZL10060
Pin No. Pin Name Port Sense
Data Sheet
Function
Schematic
16
GPP1
Output
Switching port/Test output 2
V cc 10K
GPP1 GPP2 GPP3
17 18 19, 20, 21
GPP2 VeeRF LOIP IPREF MIDIP
Output Supply Input, Input, Input
Switching port RF section ground Low band input, Mid- and Low-band i/p reference, Mid-band input
As GPP1 (pin16) -
LO IP M ID IP
IP R E F
22, 23
HIIP, HIIPB
Input, Input
Hi-band input, Hi-band input inverse
H IIP
H IIP B
24 25, 26
GPP3 LLOP, LLOPB
Output Output
Switching Port Low band oscillator output, Low-band oscillator output inverse
As GPP1 (pin16)
LLOP LLOPB
27, 28
LMOP, Output, LMOPB Output
Mid-band oscillator output, Mid-band oscillator output inverse
LMOP LMOPB
26
Zarlink Semiconductor Inc.
ZL10060
Pin No. Pin Name Port Sense
Data Sheet
Function
Schematic
29, 30, 31, 32
LHIP, LHOP, LHOPB, LHIPB
Input, Output, Output, Input
High band oscillator input, High-band oscillator output, High-band oscillator output inverse, High-band oscillator input inverse
Vcc 350 LHOPB 350 LHOP
LHIP
LHIPB
33 34 35, 36
VeeOSC Supply VccOSC Supply IFIP, IFIPB Input, Input
LO ground LO supply IF AGC amp input, IF AGC amp input inverse
-
IF IP
IF IP B
37, 38
DRIVE, PUMP
Output, Output
Loop amplifier drive output, Loop amp charge pump output
Vcc PUMP
DRIVE 340
39 40, 41
VccDIG Supply SD, SDB Output, Output
Digital section supply SAW filter driver output D, SAW filter driver o/p D inverse
V cc SD 50 SDB
42 43
VccIF XCAP
Supply Input
SAWF output supply Reference osc feedback input
V cc 110 XTAL
XCAP 0 .2 m A
44
XTAL
Output
Reference osc crystal drive
See XCAP (pin 43)
27
Zarlink Semiconductor Inc.
ZL10060
Pin No. Pin Name Port Sense
Data Sheet
Function
Schematic
45 46 47, 48
VccIF VeeIF IFOP, IFOPB
Supply Supply Output, Output
IF AGC supply IF AGC ground IF AGC amp output, IF AGC amp inverse output
Vcc IF O P
Paddle Vee
-
-
-
28
Zarlink Semiconductor Inc.
ZL10060 5.0 Absolute Maximum Ratings
Data Sheet
All voltages are referred to Vee at 0 V.
Characteristic
Min.
Max.
Units
Conditions
Supply voltage RF input voltage Maximum voltage on SDA, SCL Max voltage on all remaining signal pins Total port current Storage temperature Junction temperature Package thermal resistance (chip to ambient) ESD protection Mil-std 883B method 3015 cat1
-0.3
6 117 5.5
V dBV Transient condition only V V mA
oC oC o
Vcc = 0 to 5.5V The voltage on any pin must not exceed 6 V
-0.3
Vcc+0.3 20 150 125 27
-55
Power applied Package paddle soldered to ground All pins except 9,10 Pins 9, 10 only
C/W kV kV
2.0 1.25
6.0
Operating Range
All voltages are referred to Vee at 0 V.
Characteristic
Min.
Max.
Units.
Conditions
Supply voltage Supply voltage Ambient Temperature Low Band Input Frequency Mid Band Input Frequency High Band Input Frequency
4.5 4.75 -20 50 140 400
5.5 5.25 85 170 460 900
V V
o
Functional operation, specification not guaranteed Full specification
C
MHz MHz MHz
29
Zarlink Semiconductor Inc.
ZL10060 7.0 Electrical Characteristics
Data Sheet
Test conditions (unless otherwise stated). T = 25oC, Vee= 0 V, Vcc = 5 V, IF Frequency = 36 MHz. All signals are differential with the exception of VHF1 and VHF3 inputs.
Characteristic Supply current
Min.
Typ.
Max.
Units
Conditions
Normal operation All sections active All sections active except AGC IF amplifier Sleep Mode
117 110 92 85 9 33
140 134
mA mA mA mA mA mA
Total Current - UHF band All switching ports off Total Current - VHF Bands All switching ports off UHF Band. Switching ports off VHF Bands. Switching ports off Crystal oscillator and data interface enabled PLL and crystal oscillator enabled
Composite system to SAW Filter driver outputs VHF1 Band
Conversion gain Conversion gain Noise Figure OPIP3 Output level causing 1% cross modulation Output level causing 1.5 kHz FM I2C bus transmission induced LO frequency modulation
29 29
32 32 9
35 35 11
dB dB dB dBV dBV dBV kHz
RFin = 54 MHz. Single ended input RFin = 155 MHz. Single ended input Rs = 50 , SSB with input matching network. See Figure 10. Two output tones at 110 dBV Note 2 Note 3 Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate Local oscillator sidebands induced by an input carrier at 80 dBV offset from local oscillator by 100 kHz Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz
135 113 113
146 120 120 2.5
N+5 Direct modulation of VCO Supply ripple spurious
-40
dBc
-40
dBc
Local oscillator leakage to any band input
30
dBV
30
Zarlink Semiconductor Inc.
ZL10060
Characteristic Min. Typ. Max. Units Conditions
Data Sheet
IPIP2
134
143
dBV
Two input tones at 87 dBV at 90 MHz and 66 MHz with local oscillator at 114 MHz Desired = 54 MHz at 45 dBV Undesired = 60 and 72 MHz at 87 dBV Desired = 155 MHz at 45 dBV Undesired = 161 and 173 MHz at 87 dBV
IPIP3
112
120
dBV
IPIP3
112
119
dBV
P1dB Output Impedance
93
106 100 10
dBV
nH PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz
Phase Noise, SSB 1 kHz 10 kHz 100 kHz 10 MHz Reference spurs Phase Noise, SSB 10 kHz 100 kHz -97 -115 dBc/Hz dBc/Hz -90 -90 -95 -115 -70 -86 -106 -135 -50 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc
Noise Floor
Narrow PLL Loop Bandwidth fcomp = 62.5 kHz
Composite system to SAW Filter driver outputs VHF3 Band
Conversion gain Conversion gain Noise Figure OPIP3 Output level causing 1% cross modulation Output level causing 1.5 kHz FM
29 29
32 32 9
35 35 11
dB dB dB dBV dBV dBV
RFin = 164 MHz Single ended input RFin = 442 MHz Single ended input Rs = 50 , SSB with input matching network. See Figure 10. Two output tones at 110 dBV Note 2 Note 3
135 113 113
146 120 120
31
Zarlink Semiconductor Inc.
ZL10060
Characteristic Min. Typ. Max. Units Conditions
Data Sheet
I2C bus transmission induced LO frequency modulation
2.5
kHz
Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate Local oscillator sidebands induced by an input 750 MHz carrier at 80 dBV offset from local oscillator by 100 kHz. Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz
N+5 Direct modulation of VCO Supply ripple spurious
-
-40
dBc
-40
dBc
Local oscillator leakage to any band input IPIP2 134
30 143
dBV dBV Two input tones at 89 dBV at 198 MHz and 398 MHz with local oscillator at 240 MHz Desired = 165 MHz at 45 dBV Undesired = 171 and 183 MHz at 89 dBV Desired = 438 MHz at 45 dBV Undesired = 444 and 456 MHz at 89 dBV
IPIP3
112
122
dBV
IPIP3
112
119
dBV
P1dB Output Impedance
-95
107 100 10
dBV
nH PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz
Phase Noise, SSB 1 kHz 10 kHz 100 kHz 10 MHz Reference spurs Phase Noise, SSB 10 kHz 100 kHz -94 -114 dBc/Hz dBc/Hz -90 -87 -92 -114 -70 -86 -106 -135 -50 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc
Noise Floor
Narrow PLL Loop Bandwidth fcomp = 62.5 kHz
Composite system to SAW Filter driver outputs UHF Band
Conversion gain
35
38
41
dB
RFin = 450 MHz
32
Zarlink Semiconductor Inc.
ZL10060
Characteristic Min. Typ. Max. Units Conditions
Data Sheet
Conversion gain Noise Figure OPIP3 Output level causing 1% cross modulation Output level causing 1.5 kHz FM I2C bus transmission induced LO frequency modulation
35
38 6
41 8
dB dB dBV dBV dBV kHz
RFin = 866 MHz Rs = 50 , No image correction Two output tones at 110 dBV Note 2 Note 3 Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate Local oscillator sidebands induced by an input 750 MHz carrier at 80 dBV offset from local oscillator by 100 kHz Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz
135 113 113
146 120 120 2.5
N+5 Direct modulation of VCO Supply ripple spurious
-30
dBc
-40
dBc
Local oscillator leakage to any band input IPIP2 125
60 159
dBV dBV Two input tones at 89 dBV at 198 MHz and 398 MHz with local oscillator at 240 MHz Desired = 438 MHz at 45 dBV Undesired = 444 and 456 MHz at 85 dBV Desired = 858 MHz at 45 dBV Undesired = 864 and 876 MHz at 85 dBV
IPIP3
108
115
dBV
IPIP3
108
112
dBV
P1dB Output Impedance
91
99 100 10
dBV
nH PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz
Phase Noise, SSB 1 kHz 10 kHz 100 kHz 10 MHz Reference spurs -80 -78 -89 -113 -70 -84 -106 -135 -50 dBc/Hz dBc/Hz dBc/Hz dBc/Hz dBc
Noise Floor
33
Zarlink Semiconductor Inc.
ZL10060
Characteristic Min. Typ. Max. Units Conditions
Data Sheet
Phase Noise, SSB 10 kHz 100 kHz -91 -113 dBc/Hz dBc/Hz
Narrow PLL Loop Bandwidth fcomp = 62.5 kHz
AGC Detector and ADC
Operating frequency range AGC Threshold Level ADC leakage current
16 120
72
MHz dBV AT[2:0] = 0 VADC = 4.0 V VADC = 0.5V See Table 15
60 -60
nA nA
AGC source current
6.8 0.25
10 0.33 -100
13.3 0.43 -145
A A A
AGC sink current
-65
AGC attack current, triggered by detected level exceeding AGC attack point
AGC sink current 90% rise and fall time AGC input level response
1 1
sec
dB
Change in input level for AGC sink current to change from high impedance to 90% of maximum value, with AGC operative AGC inactive Minimum gain required Maximum gain required Maximum external voltage range which can be applied to AGCOP when disabled Over normal operating range See Table 22 See Table 22 AGF flag set to 1 AGF flag set to 0
AGCOP output impedance AGCOP output voltage range
20 0.5 4
M V V Vcc-0.4 V
External AGC voltage
0.5
AGCOP leakage current ADC step size, LSB ADC step size accuracy AGCout_flag High threshold AGCout_flag Low threshold
-50 0.16Vc
c
50
nA V
0.01Vc
c
V V
Vcc0.66 Vcc0.76
34
Zarlink Semiconductor Inc.
ZL10060
Characteristic IF amplifier Min. Typ. Max. Units Conditions
Data Sheet
Supply Current Frequency range Input impedance 16 1.5
25 72 2 2.8 1.5
mA MHz k pF dB dB dB dB VIFAGC = 3.0 V VIFAGC = 2.2 V VIFAGC = 1.2 V VIFAGC = 0.5 V Rs=50 dB 38 50 0.25 dB/V
A
Gain (Voltage conversion gain, differential source to maximum load as defined below) Noise Figure AGC range AGC control slope AGC input current Gain variation within channel
61 48 21 8
66 57 25 17 6.3
70 65 29 22 8.5
41 25
48 31
1.2VAGC2.2
dB
Channel bandwidth 8 MHz within operating frequency range, with maximum load as defined below Two output tones at 109 dBV within output channel Gain range = 21 dB to maximum
OPIP3
130
141
dBV
Output impedance Maximum load condition
120 4.7 15
k pF
Differential load
I2C BUS SDA SCL
Input high voltage Input low voltage Input current High
2.55 0
5.5 1.4 10 10
V V
A A A
Vin=5.5 V, Vcc=5.25 V Vin=5.5 V, Vcc=0 V Vin= 0 V, Vcc=5.25 V
Input Current Low Hysteresis SDA output voltage
-10 0.4 0.4 0.6
V V V kHz Isink=3 mA Isink=6 mA
SCL clock rate
100
35
Zarlink Semiconductor Inc.
ZL10060
Characteristic Min. Typ. Max. Units Conditions
Data Sheet
ADD (address) select Input high current Input low current
PLL Synthesizer
See Table 4 1 -0.5 mA mA Vin=VccD Vin=Vee
Charge pump output current Charge pump output leakage Charge pump drive output current Crystal frequency Recommended crystal series ESR External reference input frequency External reference drive level 0.5 4 25 4 0.2 0.5 Phase detector comparison frequency RF division ratio Switching ports GPP3-GPP0 Sink current Pull up resistor GPP3- GPP1 Leakage current
Note 1: Note 2: Note 3: Note 4:
See Table 8 VPUMP=2 V +-3 10 nA mA 16 70 150 20 2 MHz
Note 4 VDRIVE=0.7 V Application as in Figure 13 with 4 MHz crystal 4 MHz parallel resonant crystal Sine wave coupled through 10 nF capacitor Sine wave coupled through 10nF capacitor Recommended level for optimum phase noise at 4 MHz
MHz Vpp Vpp
31.25 240
250 32767
kHz
10 10 10
mA k
A
Vport = 0.4
Vport = Vcc, Port P0 only
0 dBm =107 dBV. All input levels are specified as voltage that would be present if input signal generator was terminated in 50 ohms Wanted signal (picture carrier) = 101 dBmV at output. Undesired signal (sound carrier) at 5.25 MHz offset modulated with 1 kHz 80% AM. Increase undesired signal to give 1% AM on wanted signal. Wanted signal at 101 dBmV. Unwanted signal at 5.25 MHz offset modulated with 1 kHz 50% AM. Increase undesired signal to give 1.5 kHz FM on wanted signal Current into PUMP pin with 20 A current from DRIVE pin
36
Zarlink Semiconductor Inc.
D D1 A A1 D2
E1
E
E2
L b e
SEATING PLANE
c Zarlink Semiconductor 2003 All rights reserved.
Package Code Previous package codes
ISSUE ACN DATE APPRD.
1
25-02-2004
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of ZL10060LDG1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X